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The authors present a reconfigurable compiler for distributed memory parallel
computers that performs automatic program partitioning, mapping, and
communication code generation under the guidance of directives supplied by
the programmer.
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Generating code for existing parallel computers in-
volves several nontrivial operations that have no ana-
logue in code generation for uniprocessor architectures.
In particular, the work must be partitioned into sched-
ulable units, the resulting computational units must be
assigned to specific processors, and additional code
must be generated to support the resulting interproces-
sor communication and synchronization. These steps
must be performed in order; the mapping cannot be
undertaken until the problem has been partitioned,
and the details of the interprocessor communication
are not known until the mapping has been completed.
The options for partitioning and mapping depend on
the problem being solved and the algorithm and archi-
tecture being used. For each new combination of prob-
lem, algorithm and architecture, a new partitioning and
mapping must be created and evaluated based on the
actual communication costs incurred.

The efficiency of the resulting program is determined
by the quantity and locality of the interprocessor com-
munication: partitionings that result in small amounts
of distributed communication will result in shorter exe-
cution times than ones that require large amounts of
global communication. The actual efficiency is also
strongly influenced by details of the architecture. Some
architectures incur large overheads to initiate each in-
dividual communication, so the ability to aggregate
messages may have a significant impact on the effi-
ciency, while other architectures have large memory
access latencies. If a particular choice of partition and
map is found to be too inefficient when the communi-
cation cost is analyzed, it is usually necessary to repeat
the code generation process from the beginning.
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At present, the partitioning, mapping, and communi-
cation instructions are embedded in the source code for
the problem. Changing any of them can involve sub-
stantial rewriting of the program. It is desirable to sepa-
rate the programmatic statement of an algorithm from
the machine-dependent partitioning, mapping, and
communication specifications. Ideally, they would sim-
ply be orthogonal and a complete program would con-
sist of an algorithm and a partitioning strategy. Chang-
ing the partitioning strategy would not require any
modification of the statement of the algorithm.

In this article, we present a compiler for distributed
memory parallel computers which performs automatic
program partitioning, mapping, and communication
code generation. The prototype compiler is imple-
mented in Prolog, with the code generation advice in-
corporated as a set of Prolog rules. The compiler pre-
sents the programmer with a global address space
programming model. A complete prototype system is
presently able to compile standard C code employing
global arrays of data into code suitable for execution on
a generic distributed memory parallel computer. All
partitioning and mapping is performed automatically,
and communication primitives are generated.

SYSTEM ARCHITECTURE
Until now, there has been little or no need to include
expert knowledge on the architecture of the target ma-
chine[s). In general, optimizing compilers are built fol-
lowing the methodology described in [8] and generate
code in two steps. A divide and conquer control strat-
egy is used to partition the compilation into small pro-
gram fragments, and code is generated for each frag-
ment independently by pattern matching [3]. Some
inefficiencies are then removed by peephole optimiza-
tions. These compilers generate good code for serial
machines, implicitly using information on the architec-
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turo of the machine. Tho problem arises now because
high porformancn nitichines are inherently purallel and
often contain more than one processor or computing
element.

Applying the serial methodology to these new high
performance architectures results in inefficient code
generation and/or undue hardships for the program-
mer. To develop efficient software, programmers must
optimize programs by partitioning the data, setting up
the communication, and optimizing the code for the
architecture of the computing element. For example,
Rymarczyk [5] gives guidelines for hand coding pipe-
lined computers at the machine level.

Our goal is to automate these steps. Much of this
information can be codified in partition directives for
problem decomposition and rule bases that describe the
processing element architecture and interconnection
topology. The code to run on these computing elements
is generated with the advice given by these directives
and the knowledge of the architecture of a processing
element and the topology of the interconnection net-
work.

All compilers use processor-specific information dur-
ing code generation and optimization. However, the or-
ganization of the compiler differs from other compilers
because the architectural information is explicitly con-
tained in a machine-specific rule base. The separation
of architectural information from the compiler yields
many advantages, such as simplifying compiler retar-
geting and supporting code generation by more sophisti-
cated problem reduction control strategies.

Retargetable compilers, i.e., compilers that can gener-
ate code for several processors, also use architectural
information during code generation. In general, retar-
getable compilers contain more explicit information;
differences between target processors must be indicated
to the compiler. However, retargetable compilers such
as PQCC [2] or the Amsterdam Compiler Kit [6] also
contain implicit information, targeting machines with
similar architectures or architectures within a proces-
sor family.

Our design philosophy differs from these retargetable
compiler designs in that all machine-specific informa-
tion is explicitly defined in a rule base. This organiza-
tion has many advantages:

1. Code generation for any processor. It is possible to
generate code for any machine by simply defining a
new rule base for the target processor. Furthermore,
retargeting requires less time and effort, since no com-
piler source code has to be modified.

2. Transportability. Code is easily transported be-
tween processors with defined rule bases. Recompiling
the source code with a different back end will yield
assembly code for a different processor.

3. Modifications in processor design easily updated. If
the manufacturer makes modifications in the processor
design, only the rules affected by the modifications
need to be modified. No compiler source code has to be
modified.

4. Upward compatibility easily described. Upward
compalible modols of a proces.sor family can be de-
scribed simply by augmenting the existing rule base.
The rule bases for the TMS320 family of digital signal
processors were developed in this manner.

5. Differences in architectures evident. Differences in
architectures are readily discernible by examining the
rule bases.

The rule base is consulted by the two code generators
of the compiler. The first code generator partitions data
and generates code for control flow and the second
generates code for the computation. The computation
code generator consists of eight phases: atomic assign-
ment evaluation, automatic assignment generator,
data-flow analysis, expression evaluator. peephole opti-
mizations on intermediate code, translation of the in-
termediate code into machine-specific mnemonics, ma-
chine-specific peephole optimizations, and the post-
processor.

The function of the atomic assignment evaluator is to
preserve high-level parallelism at the register level. An
atomic assignment evaluation is performed on each
concurrent assignment to determine if it is atomic, i.e..
a high-level language assignment that can be translated
into a single low-level assembly instruction on the tar-
get processor. Atomic assignments can contain high-
level information on register-level parallelism that
could not be otherwise described to the compiler. The
atomic assignment evaluator consults the rule base,
comparing each concurrent assignment against a list of
the processor's atomic instructions.

If a concurrent assignment is not atomic, the rule
base is consulted to determine if it is a concurrent as-
signment exhibiting register-level parallelism (CAP).
A CAP is similar to an atomic assignment, except it is
translated into a sequence of low-level instructions. As
in the case of the atomic assignment, the CAP contains
high-level information on register-level parallel opera-
tions.

A distinction is made between an atomic assignment
and a CAP since it is possible for a concurrent assign-
ment to be either type of instruction. If this is the case,
the atomic assignment representation is preferred over
the CAP representation of the concurrent assignment
since a more efficient code sequence will be generated.

The rule base is consulted by comparing each con-
current assignment of the source code to a list of atomic
assignments and CAPs. Concurrent assignments thai do
not appear in the list are passed on to the automatic
assignment generator, while atomic assignments and
CAPs are preserved.

The purpose of the automatic assignment generator is
to break the concurrent assignment into a set of equiva-
lent atomic assignments, using heuristics described by
Mills [4J. These heuristics were originally used as de-
sign rules for generating sequential Pascal statements.

The output of the automatic assignment generator is
three-address code [1], which is atomic for most proces-
sors. Three-address code specifies that an arithmetic
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operation be performed on one or two operands, and
stored in a destination register. Thus, assignments with
complex expressions aro broken down into a set of as-
signments with simple! expressions.

Tho data-flow analysis phase performs global optimi-
zation on the three-address code. The rule base is con-
sulted to determine if there are features on tho target
processor that allow optimization. For example, the
rule base should be consulted to determine if the pro-
cessor is pipelined. If it is pipelined, tho dala-flow
analysis phase will perform pipeline reorganization on
the code, using information from the rule base such as
the number of pipeline stages.

The expression ovaluator receives the code from the
data-flow analysis phase and generates assembly code
with generalized mnemonics. The expression evaluator
references the rule base to determine whether the tar-
get processor is a 0-, 1-, 2-, or 3-address machine. The
rule base must also be referenced to determine the
available addressing modes on the target processor.

After peephole optimizations are made on the gener-
alized assembly code, the generalized mnemonics are
translated into machine-specific mnemonics. The rule
base is consulted to determine how to translate the
mnemonics.

The machine-specific peephole optimizer performs
optimizations on the machine-specific assembly code. It
must reference the rule base to determine what optimi-
zations can bo performed. For example, if the processor
is pipelined, tho rule base will supply information such
as number of stages in the pipeline, and instructions
that can take advantage of pipelining. Optimizations
can then be performed, such as replacing branch insti-
tutions with delayed branches.

The rule base is also referenced to determine w^hat
type of reduction-in-strength strategies are efficient for
the architecture. For example, the operation x^ may be
replaced by the operation x x .v if it is a less expensive
operation on the architecture. Another example might
be the reduction of the expression 4 x x into the in-
struction X SHR 2 (shift x right 2 positions) if it is a less
expensive operation to implement on the architecture.

PROGRAMMING STRATEGY
As a concrete example of a partitioning strategy, we
consider the iterative solution of partial differential
equations (PDEs). These algorithms typically involve
updating the current value of the solution at each grid
point by replacing it with a simple linear combination
ofthe values of nearby points. This updating procoduro
is repeatedly applied to all ofthe points in the grid
until the change in tho values drops below a predeter-
mined threshold. The set of neighboring points whose
values are used for the updating procedure is called a
stencil: different algorithms employ different stencils.
Using theso algorithms, many grid points may bo up-
dated simultaneously. The only constraint is that, for
each point being updated, none of the other points in
its stencil can bo updated at the samo time.

The best mapping of this problem onto a distributed
memory arcliiteclure depends on the number of grid
points N,. and tho number of processors N,,. If we as-
sume thai typical problem sizes range upward from
hundreds of grid points per side, with thousands of
points being more nearly ideal, then a generous lower
bound for N^ will be 10' for two-dimensional problems
and 10'' for three-dimensional ones. Most distributed
memory computers have N,, ranging up to lO"*; the larg-
est values are still loss than 10\ We make the roason-
ablo assumption that N., > N,,. Undor this assumption,
the most natural mapping of the problem into the
architecture can be constructed as follows:

1. Embod a plane into tho multiprocossor communi-
cation network.

2. Tile the domain of the PDE problem with N,, iden-
tical polygons.

3. Assign ono tile to each processor, with neighboring
tiles assigned to neighboring processors under the
embedding in step 1.

With this mapping, each processor will be solving a
smaller, equivalent PDE boundary value problem, with
the boundary conditions at oach stago detormined by
tho solutions obtained thus far on the neighboring tiles.
The interprocessor communication load is detormined
by the need to koep the boundary conditions current on
each tile.

The best tiling is algorithm dependent: for different
stencils, different tiles will minimize the communica-
tion. It has been shown [7] that a simple geometrical
construction may be used to generate the optimal tile
for a given stencil: identify tho points that are tho far-
thest from the center and connect them with lino seg-
ments [Figure 1). The resulting shapo will bo a convex
polygon, with a specific oriontation relative to tho sten-
cil and to the coordinate axos. Such a polygon is called
the convex hull of the stencil. If the polygon can be
used to tile tho plane, while preserving tho required
orientation, it will be the optimal tile for tho stencil.

For example, diamond tiling is optimal for the five-
and nine-point cross stencils. It consists of squares ori-
ented at 45° with rospoct to tho coordinate axes. It is
useful to parameterize the tile by the length of its diag-
onal k, which must be an ovon divisor of n. The num-
ber of points enclosod is k'^/2. For the five-point cross,
each of the points in the perimeter must be communi-
cated to the adjoining tilos, as indicated in Figure 2.
Tho valuos ofthe remote points that must bo ex-
changod to update all of tho points in tho tilo aro also
indicated in Figure 2. The points at the top and the
bottom of the tile adjoin three neighbors; the remaining
points just one. Thus the total number of transfors is
given by r = perimeter + A = 2k + 2.
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Five point star Nine point star

Nine point cross Thirteen point star

FIGtJRE 1. Some Common Stencils and their Convex Hulls

The size of the appropriate tile, as parameterized by
k, is determined by the number of available processors
and the number of grid points. Once the tile size has
been computed, an origin for a global coordinate system
is chosen and the coordinates of each tile are computed
(see Figure 3). Next, the program code loop is unrolled
for values of the left-hand side of the assignment lying
in a single tile. The array references on the right-hand
side may involve both local and nonlocal variables. The
indices for the local variables are converted into rela-
tive coordinates with respect to the global coordinate
system. The nonlocal variables references are con-
verted into interprocessor communication instructions.
The remote tile involved is identified; its global coordi-
nates are used to label the communication channel to
be used. The array indices are converted into local
coordinates with respect to the remote tile, giving the
local address of the variable being communicated.

ITERATIVE PARTIAL DIFFERENTIAL EQUATION
SOLVER
The following program is an example employing the
partitioning strategy given in the previous section for
solving PDEs on a distributed memory architecture. We
have removed the loop controlling the convergence cri-
terion to better illustrate the automatic data partition-
ing and generation of communication primitives. The
program is

#defineNX 12
#defineNY 12
#define NP 8

#pragma processors NP
doubh3 phi[NXIINY|;
#pragma tile phi[i][jj ((0 1) (1 (J) [0-1) (-1 OJJ
int i, j ;

main( ) [
forall(i :== (J; i < NX; i-f-f- : j := 0;

forall(i := 0; i < NX; i ; j := 0;
j < N Y ;

FIGtJRE 2. Five-Point Star Stencil for A- = 6

The f^pragma directive is the proposed ANSI prepro-
cessor directive specifying compiler-dependent instruc-
tions. The tile command is a list of the points used in
the update rule in terms of coordinates relative to each
point. The processor directive defines the number of
processors in the array. With the code given, the num-
ber of processors can be specified on the compiler com-
mand line, allowing the program to be compiled for an
arbitrary number of processors without editing the
source.

The/on?// statements are unordered loops. The con-
struction consists of two pieces: a set of control state-
ments enclosed in parentheses and a body consisting of
a statement. As in a conventional loop, ihe forall is an
operator that applies the function defined by its body
on the domain specified by the control statements. The
forall operator does not specify the order in which the
domain is enumerated. Rather, it asserts that the func-
tion applications are independent and can be per-
formed in any serial order or even simultaneously. In
each application of the function, the statements must
be executed in the order specified.

The control arguments of the forall are set member-
ship specifications and these are separated by colons.
Two types of specifications can be made. The first is a
set membership function for a single index and takes
the same form as a for statement, specifying a lower
bound, an upper bound, and a rule for updating the
index. The second is a characteristic function of an
arbitrary subset of the Cartesian product of the indices.
The domain of the loop is the intersection of the sets of
indices specified by each of the set membership func-
tions.

After scanning and parsing, the partitions and result-
ing communication primitives are generated by the
control flow code generator. The control flow code gen-
erator has five phases of execution. In the first phase,
the array points are partitioned among the processors.
In phase two, the domain of each forall statement is
computed. In phase three, the body of each forall is
unrolled. In phase four, the concurrent assignments are
partitioned into intraprocessor concurrent assignments.
In the final phase, each global address is translated into
a processor number and local address, and the neces-
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#(lefino NP 4
#pragma processors NP

Hoat phi_r[N], phi_i[N], w_r[N/2], w_i
#pragma tile pbi_r[j] (j % NP);
#pragma tile phi_i[j] (j % NP);
float a, b;
int i, j , k;

main{ ) |
a, b : = N/2, 1;
for(i := 0; i < lg(N); i

a. b := a/2. b*2;
forall(j := 0; j < a;

phi_r[j+k], phi
k := 0; k < N; k += N/b)

phi_r[i+k+a], pbi

FIGURE 3. Global Coordinate System for Tiles (The origin for the
center tile is circled)

phi_r[j+k]

(phi_r[j+k] — w_r[j*b] * phi_r[i+k+a]
— phi_i[j+k] + w_i[j*b] * phi_i[j+k+a
(phi_r[j+k] — w_i[j*b] * phi_r[j+k+a]

— w_r[j*b] * phi

sary interprocessor communication instructions are
generated.

We have used the syntax from Occam for the inter-
processor communication primitives:

port_a_b ? array [x y] for read
port_a_b ! array [x y] for write

where _a_b are the global grid coordinates of a proces-
sor, and [-V v] are the local array indices of the word to
be transferred.

In Figure 4, we show the intermediate assembly lan-
guage code generated by the partitioning and control
flow code generator. The assembly language code is
then translated by the computation code generator
which uses the rule base describing the architecture of
the individual processors to generate machine instruc-
tions for the target machine. As described earlier, stan-
dard code optimizations are performed at this time. In
particular, redundant communication instructions will
be detected and removed with common subexpression
combination techniques.

FAST FOURIER TRANSFORM
As a second example demonstrating the flexibility of
the approach, we present the source and resulting in-
termediate code for a fast Fourier transform (FFT). The
algorithm consists of two nested loops: an outer loop
over the iterations of the transform and an inner loop
in which the components of intermediate transforms
are computed. The outer loop is necessarily serial.
However, the inner loop can be directly converted into
a forall loop. Furthermore, the two assignments in the
body of the inner loop are independent, and may be
executed as a single concurrent assignment. The result-
ing parallel code is;

#define N 16
#define lg(N) 4

Two partitioning strategies may be employed, de-
pending on whether the communication occurs at the
end of the calculation or at the beginning. Let N,, de-
note the number of processing elements. In the first
case, the calculation is organized so that no communi-
cation is required until the final logj(N,,) iterations. To

BEGIN
phi 13 11 := ( pbi [3 2]
phi J2 2) ;= ( phi |2 3|
phi [4 2) ;= ( phi [4 3|
poriJ-8 ! phi (4 1]
P0C1.3.B ! phi J3 0)
pbi ll 3] :=( (poftJJ
phi [3 3] := ( phi (3 '1|
po r l J^ '. phi |2 1|
port JJ i ' phi |3 0|
phi [5 3] :=( (portJJJ
por lJJ ! plii |5 2]
porl_3.B ' phi i'l I]
phi i:: 4| := ( Ipor lJJ
p o r t J J ! phi |1 2]
portJJ 1 phi |2 1]
phi |4 4| •= ( (porlJJ
p!irL_O.n ! phi |3 0]
pmlJJi 1 phi [1 2]
port J j l ! phi [5 2]

+ phi [4 1] +
+ phi [3 2] +

pbi |3 01 + phi (2 1]) / 4
phi |2 1] + plii [I 2|) / 4

+ phi (5 2| + phi |4 l ! + phi |3 2|) / 4

? phi 14 1|) + phi (2 3| + phi (I 2] + ( p o r l J J 7 phi \i OH) /
+ phi |4 i\ + phi [3 2] + pbi [2 1]) / 4

' phi |2 li) + (po r l JJ 7 phi [3 0|| +

7 phi (5 2|) + phi 13 4| + phi |2 J| +

' Phi( l2|)

phi [3 S) ;=( (poriJJ.ll 7 phi [3 0|)

por tJ^ ! phi (I 3|
porl.0.11 ' phi |3 5|
port J J ! pht jS 3]
phi (3 D) := ( phi [3 1|

portJIJ ! phi (5 3|
por lJJ ! phi (4 4|
phi \2 1| := ( pbi (2 2]
l io r iJ^ ! ph, [2 A]
potlJ)J2 '. phi |l 3j

+ iporU^B ?

+ phi (3 l | +

pbi |4 1| ;= ( phi [4 2] + (porUJ?
por lJJ ! phi (4 A]
porlJJ ! phi [.1 5]
p h ; i l 2 | : = ( p h i ( l 3 l
phi 13 2| := ( phi (3 3|
portJ»-2 1 phi [3 i j
port j^ i 1 phi [2 4]
phi |r. 2| := ( phi 15 3|
phi |2 3| := ( ph. |2 -11
phi {'I 3| :^ ( pht (4 -t|
phi |3 4] := ( phi (3 5|
([ALT

+ phi [2 2| +
+ phi [A 2| +

+ (portJJ '
+ phi (3 3) +
+ phi (5 3| +
+ phi |4 A] +

1- (pociJJ ? phi |2 l|) +

+ lportJ.2 7 phi 11 21)
(jio

phi [I 3]J + (porUOJl '
Ipc

(poriJ.S ! phi [5 3|) +

phi 12 4]) + (porlJJJ?

4

phi [5 I] + phi [4 3|) / A

pQrl3.2 7 phi !•! 1|)) /

phi \A 1\ + phi |3 A\) I

+ phi |3 4] +
r l J J ! phi is 2])) / A

phi [1 5); +
rlj.,'* ' phi iJ 111)/ 4

porlJJ? phi 14 4)1)/

phi(l 3|l + phi [3 I') •

(potlJ-B 7 phi (4 .||) + (porlJJS ' phi (3 S])) /
phi |3 l| + phi 12 2|) / 4

phi |3 :,]] + (rori_3^ ?
phi [2 2| + phi | l 3)) / 4
ph, [4 2| + pUi [3 3|) / 4
phi 13 3| + pbi 12 41) / A

phi [2 A]) + pi l l [4 21) /

4

I

1

1

4

1

FIGURE 4. Intermediate Code Generated by

the Control Flow Code Generator
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accomplish this, those elements of phi whose indices
aro equivEilont modulo N,, must be assigned in the same
partition. The tile directive specifies this particular
rule. In the second case, the communication occurs
over tho first Iogj(N;,) iterations, and phi is partitioned
into contiguous pieces of length N/N,,.

In Figure 5, we show the output for the case Np = 4
and N = 16. As expected, the communication occurs
only in the final two iterations. As in the preceding
example, no optimizations have been performed. Con-
ventional common subexpression elimination will re-
move the redundant read instructions. Note that the
processors communicate pairwise in each iteration. The
communications can be grouped into a single concur-
rent assignment for each iteration, possibly eliminating
communication overhead latencies. Such an optimiza-
tion is straightforward to implement once the target
computer has been specified.

TARGET ARCHITECTURES
The intermediate language code produced by the com-
piler is at the level of conventional high-level program-
ming languages for message passing computers: all data
has been assigned to individual memories; it is ex-
changed only through explicit communication instruc-
tions; and the communication primitives support a
completely connected virtual machine. The read and
write primitives can be directly mapped onto the oper-
ating system calls provided on such computers as the
Ncube/10 and the iPSC.

The resulting code may not be very efficient, how-
ever. These computers have fairly large communication
latencies, and exchanging short messages will be slow.
In general, the average message length will have to be
increased by combining shorter ones. Some combining
can be carried out automatically by performing conven-
tional live/dead analysis on the variables in the com-
munication instructions and moving the instructions
into concurrent assignments. Further optimization will
require global analysis, and cannot be performed auto-
matically at this time. However, the intermediate code
does provide a useful starting point for further optimi-
zations.

The system presently generates machine code for
several uniprocessor CPUs with multiple functional
units, including the Weitek VVTL 3364, the Texas In-
struments TMS32O family, the NEC 7720, and the
AT&T DSP32. Whenever possible, concurrent assign-
ments are executed in parallel. It is also the compiler
for the Coherent Parallel Computer presently under
construction. This system is a massively parallel, syn-
chronous MIMD computer. The startup overhead for an
interprocessor message is only 2 cycles, and the
throughput of each channel is one word per cycle. For
this system, communication code will require only
peephole optimizations to be efficient.

In the Coherent Parallel Computer, the computation
units are distinct from the memory and communication
system and can be customized for particular applica-

Code for PrnceBscir 0

BtCGlN
. phi J |U| , phU [2J . phij [2i := ( pl»j |0) + pLij ('J| ) , ( pbi j 10] - phrj |2|)
[ ( pl.i^ |0] - pli i j \2] ) . * j (0) - ( phu |0) ^ phiJ 12] ) . wj [0] ) .
( ( (.JiiJ |l)| - pbij |2| ) . WJ |0| +( pbiJ |0) - pbiJ \2] ) • * J [0| ) :

( ) [ t | | l( t |
( ( pli i j | 1 | - pb i j [3| ) . WJ
( ( p l i U | l l - p h i . x | 3 ) ) . w J

pbij phlj

liliij |0) , phU (0) . p b i j | I | . phl j III := { p b i j |0| + ph i j 111 ) . ( phij [0) - phij [11 I
( I p b . j (0| - p h i j | 1 | I . WJ [Ol - ( pbU |0| - phij |1) ) - WJ [0| ) ,
( I pblJ [0) - pll j j III ) . wJ [OJ +{ pbiJ |0| - pbij 111 ) . WJ [0| ) ;

p h u i2| . phl j [4 , phU |3| , p h u 13| := ( pb i j (2) + p b i j [.-Jl ) . ( phiJ |!j - phij [3| ]
( [ p b i j [21 - p b i j III ) . WJ |0| - ( pbiJ |2| - pbij |3) ) . WJ [0| ) .
( [ p b l j 12) - p b j j [3| ) . WJ [0] 4( pbij |2| - pbiJ |3| ) . WJ [0| ) ;

( 3 ! p h i j [01 t . ( 2 ! pbiJ (0) ) . ( 2 ! pb i j jO] ) ; (
p h i j |0| , p h u |0| := ( pbi J [0| + ( 2 ? p b i j [0| ) )
( 2' p h i j 111 ) ; [ 2 ! p h i J l i n , ( 2 ' p h i j - ( l ) ) ; (
p h j j | l | . p l i i i | 1 | := ( p b i j | l | + 1 2 ? pbi j [ l l ) )
( •! • p h i j [2] ) ; ( 2 ! p h u 12) ) . ( 2 ! pb i j |2) ) ; (
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FIGURE 5. Intermediate Code for 4-Processor,
16-Point Fast Fourier Transform
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FIGURES. Continued

tions. We are presently considering three implementa-
tions ofthe machine. The first employs commercial
Ooating point chips and will be suitable for problems
involving linear algebra, iterative and time-evolution
PDE solvers, probabilistic relaxation labeling, low-level
image processing applications such as edge, boundary,
and region detection algorithms and spectral algorithms
in computational fluid dynamics. Dedicated computers
for other applications can be constructed by combining
the communication and memory system with custom
computational units. A programmable computer for
DNA matching and sequencing can be implemented
with fast string pattern matchers. And a massively par-
allel lattice gas simulation machine can be imple-
mented by using a programmable finite automaton for
the computational unit.

CONCLUSION
To make effective use of a parallel computer, the user
is required to break the program into subtasks, devise a
mapping of the subtasks onto processing elements, and
finally add interprocessor communication instructions
as required. None of these tasks are trivial, and the
efficiency of the resulting code depends on decisions
made at each stage. At present, it is possible only to
solve these problems by trial and error.

In this article, we have presented a rapid prototyping
and retargetable compiler system which addresses
these programming tasks. By employing partitioning
directives, the system automatically decomposes the
problem into an appropriate set of subtasks and gener-
ates any necessary intertask communication instruc-
tions. With this system, the user is presented with a
single global address space. As examples, we have
shown the compilation from C into an intermediate
assembly language for a point-iterative elliptic partial
differential equation solver and for a fast Fourier
transform.

Code generation is an optimization process. For von
Neumann architectures, a divide and conquer approach
is adequate, since the individual operations which com-
prise a computation are essentially independent. The
inefficiencies that result from generating a single ma-
chine instruction at a time can largely be corrected
with subsequent peephole optimizations. For other ar-
chitectures however, especially those with a multitude
of independent functional units, as in parallel or pipe-
lined computers, the instructions are much more inter-
dependent, and generating good code requires consider-
ation of significantly different execution orders. In this
situation, more sophisticated optimization techniques
are demanded. We have presented a compiler which
uses a combination of both problem reduction and heu-
ristic search to generate code. The problem reduction
strategy consists of identifying maximal concurrent as-
signments rather than individual operations. Heuristic
search is then used to find the locally optimal code for
each concurrent assignment and to combine the partial
solutions to produce globally (nearly] optimal code.

Partitioning information should be incorporated into
type declarations. In general, type information is the
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specification of the representation of data for a particu-
lar operation. Viewed from this perspoclivo, the parti-
tioning of data is a particular form of typin^̂ . When
implemented as type declarations, partitioning rules
can be extondnd to encompass dynamically allocated
varinhles. In nddition, complex communication opera-
tions can be specified as a typecasting, without requir-
ing the introduction of auxiliary variables cr temporary
storage. Furthermore, by means of a simple generaliza-
tion of the principle of reduction in strength, the tech-
niques described here can be employed to solve the
problems of dereferencing an arbitrary pointer and per-
forming pointer arithmetic. We are presently extending
the system to permit tho specification of partitioning
information as a generalization of a type declaration
and to handle arbitrary pointer operations.
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